

Grundlagen Physik für 7 I

Mechanik	
Länge ℓ (engl. length) Grundgröße	$[\ell] = 1 \text{ m}$
Zeit t (engl. time) Grundgröße	[t] = 1 s
Masse m (engl. mass) Grundgröße	 [m] = 1 kg Maß für die Trägheit und Schwere eines Körpers ortsunabhängig
Kraft F (engl. force) Grundgröße	 Kräfte kann man nur an ihren Wirkungen erkennen: Verformung eines Körpers: dauerhaft (plastisch) vorübergehend (elastisch) Änderung des Bewegungszustands eines Körpers: Der Körper kann schneller oder langsamer werden und/oder seine Bewegungsrichtung ändern. [F] = 1 N (Newton)
Vektorcharakter der Kraft:	$\left. \begin{array}{c} \textbf{Angriffspunkt A} \\ \textbf{Betrag} \\ \textbf{Richtung} \end{array} \right\} \textbf{Kraftpfeil } \overrightarrow{\textbf{F}} $
Gleichgewicht von Kräften	 Zwei Kräfte, die an einem Körper angreifen, sind im Gleichgewicht, wenn: ihre Angriffspunkte auf derselben Wirkungslinie liegen, sie dieselben Beträge und entgegengesetzte Richtungen haben.
Kräfteaddition	Die Zusammensetzung von zwei Kräften $\overline{F_1}$ und $\overline{F_2}$ mit gemeinsamen Angriffspunkt erfolgt mit Hilfe eines Parallelogramms. Die Ersatzkraft für die beiden Kräfte heißt resultierende Kraft.

Grundlagen der Physik für Realschulen in Bayern

Kräftezerlegung	Bei der Zerlegung einer Kraft \overrightarrow{F} (siehe oben) müssen entweder eine Kraft-komponente oder die Wirkungslinien der einzelnen Kraftkomponenten bekannt sein.	
Wechselwirkungsgesetz	Übt ein erster Körper auf einen zweiten eine Kraft $\overrightarrow{F_1}$ aus, so übt gleichzeitig der zweite auf den ersten Körper eine gleichgroße, entgegen gesetzte Kraft $\overrightarrow{F_2}$ aus. $\overrightarrow{F_1} = -\overrightarrow{F_2}$ z. B. Raketenantrieb	
Gravitation	Alle Körper ziehen sich gegenseitig an.	
Gewichtskraft $\overrightarrow{F_G}$	Die Gewichtskraft $\overrightarrow{F_G}$ auf einen Körper entsteht durch die gegenseitige Anziehung (Gravitation) von Erde und Körper, die mit wachsender Entfernung von der Erde abnimmt. Die Gewichtskraft ist ortsabhängig. Auf der Erde gilt: Auf eine 100 g Tafel Schokolade wirkt eine Gewichtskraft von ungefähr einem Newton.	
Ortsfaktor g abgeleitete Größe	Definitionsgleichung: $g=\frac{F_G}{m} \ \ \text{mit} \ \ [g]=1\frac{N}{kg}$ am Normort (z. B. Zürich): $g=9.81\frac{N}{kg}$	

Bau der Körper

Es gibt feste, flüssige und gasförmige Körper. Die Körper bestehen aus sehr kleinen Teilchen. Zwischen den Teilchen wirken (abstoßende und anziehende) Kohäsionskräfte, deren Reichweiten gering sind.

	fester Stoff	flüssiger Stoff	gasförmiger Stoff	
Form	unveränderlich	passt sich der Gefäß- form an	nimmt den ganzen zur Verfügung stehenden Raum ein	makroskopisch
Volumen (bei konstanter Temperatur)	unveränderlich	Unveränderlich	veränderlich	opisch
Teilchenmodell				
Abstand zwischen den Teilchen (im Vergleich zur Teil- chengröße)	klein	klein, aber etwas größer als bei Fest- körpern	sehr groß	m <u>i</u>
Kohäsionskräfte	sehr stark	weniger stark	fast keine	mikroskopisch
Anordnung der Teilchen	regelmäßig (im Gitter)	gegeneinander ver- schiebbar	frei und unregelmä- ßig	
Art der Teilchenbewe- gung	Schwingen um feste Gleichgewichtslagen	Schwingen um wechselnde Gleich- gewichtslagen	unregelmäßig	

Optik		
Sender	 selbst leuchtender Körper (z. B. Sonne) nicht selbst leuchtender Körper (z. B. Mond) 	
Ausbreitung	geradlinig • ohne Medium (im Vakuum) • in einem durchsichtigen Medium (z. B Luft) In Luft breitet sich Licht mit einer Geschwindigkeit von ca.	
Modell	Der Lichtstrahl ist eine Modellvorstellung für ein schmales Lichtbündel.	
Reflexion	Trifft Licht auf raue Flächen, so erfolgt diffuse Reflexion, bei glatten Flächen wird es gerichtet reflektiert.	
Reflexionsgesetz	Es gilt: Der Einfallswinkel ϵ ist dem Reflexionswinkel ϵ_r maßgleich. Der Lichtweg ist umkehrbar. Einfallslot und Strahlen liegen in einer Ebene.	
Brechung	Tritt Licht in unterschiedlichen, durchsichtigen Medien (z. B. beim Übergang Luft-Wasser) aus, so wird es an deren Grenzfläche gebrochen und reflektiert oder total reflektiert. Wasser/Glas	

Grundlagen der Physik für Realschulen in Bayern

Konvexlinsen (Sammellinsen)	sammeln Lichtbündel
Konkavlinsen	zerstreuen Lichtbündel
Prisma	Beim Durchgang durch ein Prisma wird weißes Licht in die Spektralfarben (Regenbogenfarben) zerlegt.
Empfänger	z. B. Netzhaut des Auges, Film oder Aufnahmechip eines Fotoapparats

Akustik	
Sender	schwingender Körper Ein Ton ist durch die Tonhöhe (Frequenz) und Lautstärke (Amplitude) ge- kennzeichnet.
Ausbreitung	nur in einem Medium möglich Die Schallgeschwindigkeit in Luft beträgt ca. $340 \ \frac{m}{s}$.
Empfänger	z.B. Mikrofon, Trommelfell. Das menschliche Gehör kann nur Töne im Frequenzbereich von etwa 16 Hertz bis zu 20000 Hertz wahrnehmen.